Deconfinement phase transition in
SU(3)/7Z3 QCD (adj) via the gauge
theory/affine XY-model duality




LHC

* LHC exciting news?!!




spontaneous breaking of chiral symmetry (via
confinement) === the visible mass in the universe

[4

Confinement is the mechanism for holding quarks
inside nucleons
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Confinement 1s Hard!
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» As we increase the temperature, deconfinement
happens

* Quark-gluon plasma: a new state of matter
» Novel phenomena, e.g. chiral magnetic effect




Studying phase transition == order parameter
(magnetization (|ml))
Order parameter Q=exp {q Aodxo}

S Thermal circle: 1
Confined phase (tr[Q])=0, T <T, 'compacttime circumference
Deconfined phase (trQ))=0,T>T,
The physics is that (tr[Q]) ~e™" S

This 1s attributed to Z, 4 rO ﬁ

center symmetry in SU(N) :
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Phase transition order parameters

» Divide by the center

SU(N)/Z,
o Still tr€) jumps at the
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R*! x S?

Lattice QCD is in excellent agreement with this picture

QCD is a strongly coupled system, not analytically
tractable

Ways AdS/CFT

One needs a simpler theory that is under complete
control, yet resembles the original theory

A promising setup is Yang-Mills on R?!xS?

Spatial circle

These ideas started in the 1990 in supersymmetry



R*! x S?

Pros:

Perform reliable semi-classical calculations
Test the rules of different symmetries (center,
topological, chiral, etc.)

Disentangle different physical phenomena (e.g.
confinement & chiral symmetry breaking)

Mapping to lower-dimensional condensed matter
systems (simulations, or using analogue systems to
test our guage theories)

FUN!!!



] n R*'xS*
Gauge theories o
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R*! x S?

Ultimate goal

Cook up models that contain the same ingredients of
realistic theories (adjoint & fundamental fermions,
magnetic field, the vacuum angle, etc)

Compare the results with existing experiments
(either real or full 4-D lattice experiments)

Make predictions and propose further experiments



R*! x S?

Today’s meal: deconfining phase transition in
SU(3)/Z_3 QCD with adjoint fermions

\ - R
Adj fermi ;% E
=2=wm )
S
Lattice experiments for SU(3) model were conducted
in 4-D : first order transition = Karsch and Lutgemeir 1998




R*! x S?

Deconfining phase transition of SU(N) (adj) gauge
theories with one compact dimension via gauge

theory/affine XY model duality m.a., E. poppitz, M. Unsal 2011,
M.A,, S.C,, E. Poppitz 2012

H=>J cos(K.(ﬁx — Feen ))+ ZKCOS(@@)
r :

SU(2) & SU(2)/Z2 using RG
(second order transition)
SU(3)/Z3 using Monte Carlo



Formulation of QCD adj on R?'xS!, pertubative and
non-perturbative effects at T=0 and Coulomb gas

QCD adj at finite temperature, partition function
Mapping to XY spin-models

Monte Carlo Simulations

Conclusion and future directions



R*! xSt

S = j itr[-%FWF‘“”+2itr/1_,gﬂDyl,—|SU(nf)><U(1)

Flavor symmetry

N ¢ Adjoint fermions with periodic boundary
conditions along the  circle

smglLSl L 1 } g 2
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R*! xSt

The theory abelianizes SU(N)—>U@"™*
at small §! the gauge coupling is small
The theory is effectively 3-D

g(E)
. <llN
S 1 [
) S = _L(_j (oo +iZi,0%4
u@™ SU(N) N —1components of
( jdualphotons

W and heavych arged fermions massless
A 1/L E fermions

Strong coupling scale



More interesting story to tell: non-perturbative
effects (Polyakov model)

Feynman path integral

-S
Lotid = Ze ;

paths

Perturbative +non-perturbative (instantons)

k 2/ Monopole-instantons



These instantons are localized in space and time

probability = e_SO/2
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» Twisted monopoles were discovered by Kraan and
Baal and (calarons), and Lee and Lu (D-branes)

(1998)
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Non-perturbative objects

» But we have additional adjoint fermions




If nothing else

_ sz( J (6G)Z+I/1 "0 4, +be %7 (det, 2,4, )" +h.c.

No confinement!
However, for n, =1 the theory is supersymmetric.

Supersymmetric theorieson R3xS! confine.
(Khoze et al 1999)

Solution by Unsal 2007, mechanism is transcendent
beyond SUSY



Molecular objects (Bions)
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Forces and scales
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N
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Bions proliferate in the vacuum: 3-D Coulomb gas
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The U(1) chiral is anomalous. This symmetry breaks
to 7 SU(N)
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Relevant symmetries for
confinement/deconfinement
Z, X Zy

discretechiral  centerfor SU(N), or topoolgicalfor SU(N)/Z,



At finite temperature we compactify the time
direction
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Story has an other twist!
At finite temperature, the W’s are important

density oc e ™' (electric fugacity )

P S PN
g2
27T
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Add to that the Aharonov-Bohm effect
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QCD adj at finite temperature

S ————

.

————

~.
Sc e

~——

————

~.
Sc e

~.
Sc e

o
S~

- ==x,

TS
, —_— %
H Sc e
1
1 —
\
S
-~ BN

’

~.
Sc e

. log r

~.
Sc e

12/5/2013




The correct partition function
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Potential sign problem for simulations K

Strong coupling at the self-dual point



» Cook again, but now with “different” looking
ingredient

<ezi§.3(§<)e—2i§.9(5)>

Spin model



For SU(2), there is an exact solution via RG analysis
(M.A. , E. Poppitz, M. Unsal)

However, the RGEs break down for SU(3) and so we
must turn to simulations on the lattice

The spin model dual to SU (3) /Z3QCD(adj) is the
theory of two coupled XY-spins:

9_;3 = (01,0%) = 9_;3 + 2] = (9_;3 + 27 aly

)X



The spin model is defined by a lattice partition
function with:

N.=3 N.=3
K - — — » - - —
—BH = SJ SJ . coS 20; - (Optp — 0) + E E ycos2(a; —adi—1) -0,
rii=1,2 i=1 = i1

Kinetic term: similar to a model used to describe
melting of a 2d crystal on a triangular lattice
(Nelson, 1977)

(Kardar, Statistical Physics of Fields)



SU(3) interpretation of spin model:

Fluctuations in {6, }: duals of two massless photons
sourced by magnetic bions

Vortices Zi § d1.v 9 = +1 describe electric excitations
in theory 7(TW—bosons) excitedat T > 0

Exact U(1) x U(1) symmetry (corresponding to two
dual photons) is broken by potential “external field”
term to 7% x 73X symmetry



Computational results: order parameter
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Z3xZ3 Model, h=1.0
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Computational results: energy per spin
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Computational results: vortex density
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Picture for QCD adj
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Computational results: magnetic susceptibility

Z3xZ3 Model, h=1.0
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Computational results: specific heat

Z3xZ3 Model, h=1.0

Specific Heat

Temperature
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Finite-size scaling

O data
— fitted line

©® data
fitted line
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Our findings appear consistent with a first-order
phase transition!

Computational finite-size scaling provides a
necessary counterpoint to the suggestion of
(unconvincing, due to the onset of strong coupling)
renormalization group analyses that the self-dual
point is a fixed point



Further corroboration for the observed first-order
phase transition: phase coexistence

h=0.5, N=32, T'=0.940 h=0.5, N=32, T'’=0.980
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Phase coexistence at the critical temperature:
h=0.5, N=32, T’ =0.957
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Final check:

It has been shown that for sufficiently large volumes and in the

° . . / ° ° °
critical region % is expected to be a universal function of
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Study of the phase transition in the XY-spin model
dual to QCD adj theory on R* xS’

The phase transition is first order for SU(3)/Z_3
using Monte carlo simulations

This agrees with what was found for the
deconfinement transition in SU(3) 4-D QCD(adj)
One would also want to study other effects, like
adding fundamental fermions and turning on a

background field
Work along these lines is in progress



Speculations and further studies
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