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1 Effective Confinement from Underlying Conformal Invariance
[S. J. Brodsky, GdT and H.G. Dosch, arXiv:1302.4105]

• Incorporate in an effective theory the fundamental dilatation symmetry of the 4-dim QCD Lagrangian

in the chiral limit of massless quarks

• Invariance properties of one dimensional field theory under the full conformal group from dAFF action

[V. de Alfaro, S. Fubini and G. Furlan (dAFF) [Nuovo Cim. A 34, 569 (1976)]

S = 1
2

∫
dt
(
Q̇2 − g

Q2

)
where g is a dimensionless number (Casimir operator which depends on the representation)

• The equation of motion

Q̈− g

Q3
= 0

and the generator of evolution in t, the Hamiltonian

Ht = 1
2

(
Q̇2 +

g

Q2

)
follow from the dAFF action
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• Absence of dimensional constants implies that the action

S = 1
2

∫
dt
(
Q̇2 − g

Q2

)
is invariant under a larger group of transformations, the general conformal group

t′ =
αt+ β

γt+ δ
, Q′(t′) =

Q(t)
γt+ δ

with αδ − βγ = 1

• Applying Noether’s theorem obtain conserved operators

i) Translations: Ht = 1
2

(
Q̇2 + g

Q2

)
ii) Dilatations: D = tHt − 1

2QQ̇

iii) Special conformal transformations: K = t2Ht − tQQ̇+ 1
2Q

2

• Any combination of the generators Ht, D and K

G = uHt + vD + ωK

is also a constant of motion
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• TIme evolution for state vector and field operator for dAFF generator G from canonical quantization

[Q(t), Q̇(t)] = i

G|ψ(t)〉 = if(t)
d

dt
|ψ(t)〉

i [G,Q(t)] = f(t)
dQ(t)
dt
− 1

2

df(t)
dt

Q(t)

where f(t) = u+ vt+ wt2

• dAFF introduce new time variable τ and field operator q(τ)

dτ =
dt

u+ vt+ wt2
, q(τ) =

Q(t)

[u+ vt+ wt2]
1
2

• Find usual quantum mechanical evolution for time τ

G|ψ(τ)〉 = i
d

dτ
|ψ(τ)〉

i [G, q(τ)] =
dq(τ)
dτ

and usual equal-time quantization [q(t), q̇(t)] = i
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• In terms of τ and q(τ)

S = 1
2

∫
dt
(
Q̇2 − g

Q2

)
= 1

2

∫
dτ
(
q̇2 − g

q2
− 4uω − v2

4
q2
)

+ surface term

Action is conformal invariant invariant up to a surface term !

• The corresponding Hamiltonian

Hτ = 1
2

(
q̇2 +

g

q2
+

4uω − v2

4
q2
)

is a compact operator for
4uω − v2

4
> 0

• Scale appears in the Hamiltonian without affecting the conformal invariance of the action !
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Conformal Quantum Mechanics

• The Schrödingier picture follows from the representation of q and p = q̇ (dAFF)

q → x, q̇ → −i d
dx

• Schrödinger wave equation determines evolution of bound states in terms of the variable τ

i
∂

∂τ
ψ(x, τ) = Hτ

(
x,−i d

dx

)
ψ(x, τ)

• dAFF Hamiltonian

Hτ = 1
2

(
− d2

dx2
+

g

x2
+

4uω − v2

4
x2
)
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2 Light Front Dynamics

• On shell relation PµP
µ = P−P+−P2

⊥ = M2 leads to dispersion relation for LF Hamiltonian P−

P− =
P2
⊥ +M2

P+
, P+ > 0, P± = P 0 ± P 3

• Hamiltonian equation for the relativistic bound state (x+ = x0 + x3 light-front time)

i
∂

∂x+
|ψ(P )〉 = P−|ψ(P )〉 =

M2 + P2
⊥

P+
|ψ(P )〉

• Construct LF Lorentz invariant Hamiltonian P 2 = P−P+ −P2
⊥

PµP
µ|ψ(P )〉 = M2|ψ(P )〉

• LF quantization allows unambiguous definition of partonic content of hadrons (wave function)

• LF Hamiltonian equation for bound states has similar structure of AdS and dAFF equations:

direct connection of QCD with AdS/CFT and conformal QM (dAFF) possible !
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Semiclassical Approximation to QCD in the Light Front

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Compute M2 from hadronic matrix element

〈ψ(P ′)|PµPµ|ψ(P )〉=M2〈ψ(P ′)|ψ(P )〉

• To first approximation LF dynamics depends only on the invariant variable ζ2 = x(1− x)b2
⊥

• Factor angular ϕ, longitudinal X(x) and transverse mode φ(ζ)

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√
2πζ

• Ultra relativistic limit mq → 0 longitudinal modes X(x) decouple (L = Lz)

M2 =
∫
dζ φ∗(ζ)

√
ζ

(
− d2

dζ2
− 1
ζ

d

dζ
+
L2

ζ2

)
φ(ζ)√
ζ

+
∫
dζ φ∗(ζ)U(ζ)φ(ζ)

where the confining forces from the interaction terms are summed up in the effective potential U(ζ)
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• LF eigenvalue equation PµP
µ|φ〉 = M2|φ〉 is a LF wave equation for φ

(
− d2

dζ2
− 1− 4L2

4ζ2︸ ︷︷ ︸
kinetic energy of partons

+ U(ζ)︸ ︷︷ ︸
confinement

)
φ(ζ) = M2φ(ζ)

• Effective relativistic and frame-independent LF Schrödinger equation, U is instantaneous in LF time

• The SO(2) Casimir L2 corresponds to group of rotations in transverse LF plane

• Semiclassical approximation to LF QCD does not account for particle creation and absorption

• Compare with dAFF Hamiltonian

Hτ = 1
2

(
− d2

dx2
+

g

x2
+

4uω − v2

4
x2
)

• Identical with LF Hamiltonian provided x is identified with the LF variable ζ : x = ζ/
√

2, g with the

LF orbital angular momentum L: g = L2 − 1/4 with effective LF confining interaction U ∼ λ2ζ2
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3 Higher Integer-Spin Wave Equations in AdS Space

and Light Front Holographic Mapping

RNKLM = −
1

R2
(gNLgKM − gNM gKL)

• Why is AdS space important?

AdS5 is a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space

• Isomorphism of SO(4, 2) group of conformal transformations with generators Pµ,Mµν,Kµ, D with

the group of isometries of AdS5 Dim isometry group of AdSd+1: (d+1)(d+2)
2

• AdS5 metric xM = (xµ, z):

ds2 = gMNdx
MdxN =

R2

z2
(ηµνdxµdxν − dz2)

• Since the AdS metric is invariant under a dilatation of all coordinates xµ → λxµ, z → λz, the

variable z acts like a scaling variable in Minkowski space

• Short distances xµx
µ → 0 maps to UV conformal AdS5 boundary z → 0

• Large confinement dimensions xµx
µ ∼ 1/Λ2

QCD map to large IR region of AdS5, z ∼ 1/ΛQCD,

thus there is a maximum separation of quarks and a maximum value of z
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Higher Spin Wave Equations in AdS Space

[GdT, H.G. Dosch and S. J. Brodsky, PRD 87, 075004 (2013)]

• Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)

• Integer spin-J fields in AdS conveniently described by tensor field ΦN1···NJ
with effective action

Seff =
∫
ddx dz

√
|g| eϕ(z) gN1N ′1 · · · gNJN

′
J

(
gMM ′DMΦ∗N1...NJ

DM ′ΦN ′1...N
′
J

− µ2
eff (z) Φ∗N1...NJ

ΦN ′1...N
′
J

)
where DM is the covariant derivative which includes affine connection

• The z-dependent effective AdS mass µeff (z) can absorb the contribution from different contractions

in the action and is a priori unknown

• Effective mass µeff (z) allows a separation of kinematical and dynamical effects and is determined by

precise mapping to light-front physics

• Non-trivial geometry of pure AdS encodes the kinematics and the additional deformations of AdS

encode the dynamics, including confinement
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• Physical hadron has plane-wave and polarization indices along 3+1 physical coordinates

ΦP (x, z)µ1···µJ = eiP ·xΦ(z)µ1···µJ , Φzµ2···µJ = · · · = Φµ1µ2···z = 0

with four-momentum Pµ and invariant hadronic mass PµP
µ=M2

• Further simplification by using a local Lorentz frame with tangent indices

• Variation of the action gives AdS wave equation for spin-J field Φ(z)ν1···νJ = ΦJ(z)εν1···νJ[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)
zd−1−2J

∂z

)
+
(
mR

z

)2
]

ΦJ = M2ΦJ

with

(mR)2 = (µeff (z)R)2 − Jz ϕ′(z) + J(d− J + 1)

and the kinematical constraints

ηµνPµ ενν2···νJ = 0, ηµν εµνν3···νJ = 0.

• Kinematical constrains in the LF imply that m must be a constant

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]
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Light-Front Mapping

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

• Upon substitution ΦJ(z) ∼ z(d−1)/2−Je−ϕ(z)/2 φJ(z) and z→ζ in AdS WE[
−z

d−1−2J

eϕ(z)
∂z

(
eϕ(z)

zd−1−2J
∂z

)
+
(
mR

z

)2
]

ΦJ(z) = M2ΦJ(z)

we find LFWE (d = 4)(
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)
φJ(ζ) = M2φJ(ζ)

with
U(ζ) = 1

2ϕ
′′(ζ) +

1
4
ϕ′(ζ)2 +

2J − 3
2z

ϕ′(ζ)

and (mR)2 = −(2− J)2 + L2

• Unmodified AdS equations correspond to the kinetic energy terms of the partons inside a hadron

• Interaction terms in the QCD Lagrangian build the effective confining potential U(ζ) and correspond

to the truncation of AdS space in an effective dual gravity approximation

• AdS Breitenlohner-Freedman bound (mR)2 ≥ −4 equivalent to LF QM stability condition L2 ≥ 0
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Meson Spectrum

• Dilaton profile in the dual gravity model is also determined from conformal QM (dAFF) !

ϕ(z) = λz2, λ2 =
4uω − v2

16

• Effective potential: U = λ2ζ2 + 2λ(J − 1)

• LFWE (
− d2

dζ2
− 1− 4L2

4ζ2
+ λ2ζ2 + 2λ(J − 1)

)
φJ(ζ) = M2φJ(ζ)

• Normalized eigenfunctions 〈φ|φ〉 =
∫
dζ φ2(z)2 = 1

φn,L(ζ) = |λ|(1+L)/2

√
2n!

(n+L)!
ζ1/2+Le−|λ|ζ

2/2LLn(|λ|ζ2)

• Eigenvalues for λ > 0 M2
n,J,L = 4λ

(
n+

J + L

2

)
• For λ < 0, M2 = −4λ (n+ 1 + (L− J)/2), incompatible with the LF constituent interpretation

of hadronic states
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ζ

φ(ζ)

0 4 8
0

0.4

0.8

2-2012

8820A9 ζ

φ(ζ)

0 4 8

0

0.5

-0.5

2-2012

8820A10

LFWFs φn,L(ζ) in physical space-time: (L) orbital modes and (R) radial modes
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Table 1: I = 1 mesons. For a qq state P = (−1)L+1, C = (−1)L+S

L S n JPC I = 1 Meson

0 0 0 0−+ π(140)
0 0 1 0−+ π(1300)
0 0 2 0−+ π(1800)
0 1 0 1−− ρ(770)
0 1 1 1−− ρ(1450)
0 1 2 1−− ρ(1700)

1 0 0 1+− b1(1235)
1 1 0 0++ a0(980)
1 1 1 0++ a0(1450)
1 1 0 1++ a1(1260)
1 1 0 2++ a2(1320)

2 0 0 2−+ π2(1670)
2 0 1 2−+ π2(1880)
2 1 0 3−− ρ3(1690)

3 1 0 4++ a4(2040)
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• J = L+ S, I = 1 meson families M2
n,L,S = 4λ (n+ L+ S/2)

0

2

4

0 2

L

M
2

  
(G

e
V

2
)

2-2012
8820A20

π(140)

π(1300)

π(1800)

b1(1235)

n=2 n=1 n=0

π2(1670)

π2(1880)

0

2

4

0 2

M
2

  
(G

e
V

2
)

2-2012
8820A24 L

ρ(770)

ρ(1450)

ρ(1700)

a2(1320)

a4(2040)

ρ3(1690)

n=2 n=1 n=0

Orbital and radial excitations for the π (
√
λ = 0.59 GeV) and the ρ I=1meson families (

√
λ = 0.54 GeV)
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M2IGeV2M

L

ΡH770L

a2H1320L

Ρ3H1690L

a4H2040L

a1H1260L

a0H980L

0 1 2 3

0

1

2

3

4

5

M2
n,J,L = 4λ

(
n+

J + L

2

)

• Triplet splitting for vector meson a-states

(L = 1, J = 0, 1, 2)

Ma2(1320) >Ma1(1260) >Ma0(980)

• Systematics of I = 1 light meson spectra – orbital and radial excitations as well as important J − L
splitting, well described by light-front harmonic confinement model

• Linear Regge trajectories, a massless pion and relation between the ρ and a1 massMa1/Mρ =
√

2
usually obtained from Weinberg sum rules [Weinberg (1967)]
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4 Higher Half-Integer Spin Wave Equations in AdS Space

and Light-Front Holographic Mapping

[J. Polchinski and M. J. Strassler, JHEP 0305, 012 (2003)]

[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[GdT, H.G. Dosch and S. J. Brodsky, PRD 87, 075004 (2013)]

Image credit: N. Evans

• The gauge/gravity duality can give important insights into the strongly coupled dynamics of nucleons

using simple analytical methods: analytical exploration of systematics of light-baryon resonances

• Extension of holographic ideas to spin-1
2 (and higher half-integral J ) hadrons by considering wave

equations for Rarita-Schwinger spinor fields in AdS space and their mapping to light-front physics

ζ =
√

x

1− x

∣∣∣ n−1∑
j=1

xjb⊥j
∣∣∣

where x = xn is the longitudinal momentum fraction of the active quark

• LF clustering decomposition: Same multiplicity of states for mesons and baryons !
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• Half-integer spin J = T + 1
2 conveniently represented by RS spinor [ΨN1···NT

]α with effective AdS

action

Seff = 1
2

∫
ddx dz

√
|g| gN1N ′1 · · · gNT N

′
T[

ΨN1···NT

(
iΓA eMA DM − µ− ρ(z)

)
ΨN ′1···N ′T + h.c.

]
where the covariant derivative DM includes the affine connection and the spin connection

• eAM is the vielbein and ΓA tangent space Dirac matrices
{

ΓA,ΓB
}

= ηAB

• For fermions one cannot introduce confinement with dilaton since it can be scaled away [I. Kirsch (2006)]

• Introduce effective interaction ρ(z) constrained by the condition that the square of the Dirac equation

leads to harmonic confinement (dAFF)

• Linear covariant derivatives in the action prevents mixing between dynamical and kinematical effects

• In contrast with effective action for integer spin, the AdS mass µ is constant: systematics of meson

and baryon spectrum different !
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• Physical baryons have spinors, and T polarization indices along 3+1 physical coordinates

Ψµ1···µT , Ψzµ2···µT = · · · = Ψµ1µ2···z = 0

• Further simplification by using a local Lorentz frame with tangent indices

• Variation of the action gives AdS wave equation for spin-J field Ψν1···νJ[
i

(
zηMNΓM∂N +

d− 2T
2

Γz

)
− µR−Rρ(z)

]
Ψν1...νT = 0

and the Rarita-Schwinger condition

γνΨνν2 ... νT = 0

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]
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Light-Front Mapping

• A physical baryon satisfies the Rarita-Schwinger equation for spinors in physical space-time

(iγµ∂µ −M)uν1···νT (P ) = 0, γνuνν2···νT (P ) = 0

• Upon substitution in AdS wave equation for spin J (u± chiral spinors)

Ψ±ν1···νT
(x, z) = eiP ·x

(
R

z

)T−d/2
ψ±T (z)u±ν1···νT

(P )

and z → ζ find LFWE

− d

dζ
ψ− −

ν + 1
2

ζ
ψ− − V (ζ)ψ− = Mψ+

d

dζ
ψ+ −

ν + 1
2

ζ
ψ+ − V (ζ)ψ+ = Mψ−

provided that |µR| = ν + 1
2 and ψ±T = ψ± with effective LF potential

V (ζ) =
R

ζ
ρ(ζ)

a J -independent potential – No spin-orbit coupling along a given trajectory !
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Baryon Spectrum

• Choose linear potential V = λ ζ , λ > 0 from underlying conformality of the theory (dAFF)

• Eigenfunctions

ψ+(ζ) ∼ ζ
1
2
+νe−λζ

2/2Lνn(λζ2), ψ−(ζ) ∼ ζ
3
2
+νe−λζ

2/2Lν+1
n (λζ2)

• Eigenvalues

M2 = 4λ(n+ ν + 1)

• Gap scale 4λ determines trajectory slope and

spectrum gap between plus-parity spin-1
2 and

minus-parity spin-3
2 nucleon families !

• For nucleons ν+
1/2 = L, ν−3/2 = L+ 1,

where L is the relative LF angular momentum

between the active quark and spectator cluster

• For λ < 0 no solution possible
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L S n Baryon State

0 1
2 0 N 1

2

+(940)
0 1

2 1 N 1
2

+(1440)
0 1

2 2 N 1
2

+(1710)
0 3

2 0 ∆ 3
2

+(1232)
0 3

2 1 ∆ 3
2

+(1600)
1 1

2 0 N 1
2

−(1535) N 3
2

−(1520)
1 3

2 0 N 1
2

−(1650) N 3
2

−(1700) N 5
2

−(1675)
1 1

2 0 ∆ 1
2

−(1620) ∆ 3
2

−(1700)
2 1

2 0 N 3
2

+(1720) N 5
2

+(1680)
2 1

2 1 N 5
2

+(1900)
2 3

2 0 ∆ 1
2

+(1910) ∆ 3
2

+(1920) ∆ 5
2

+(1905) ∆ 7
2

+(1950)
3 1

2 0 N 5
2

−
N 7

2

−

3 3
2 0 N 3

2

−
N 5

2

−
N 7

2

−(2190) N 9
2

−(2250)
3 1

2 0 ∆ 5
2

− ∆ 7
2

−

4 1
2 0 N 7

2

+
N 9

2

+(2220)
4 3

2 0 ∆ 5
2

+ ∆ 7
2

+ ∆ 9
2

+ ∆ 11
2

+(2420)
5 1

2 0 N 9
2

−
N 11

2

−

5 3
2 0 N 7

2

−
N 9

2

−
N 11

2

−(2600) N 13
2

−
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• Phenomenological identification to describe the full baryon spectrum: plus and negative sectors have

internal spin S = 1
2 and S = 3

2

ν+
1/2 = L, ν+

3/2 = L+ 1/2

ν−1/2 = L+ 1/2, ν−3/2 = L+ 1

0 2 4

6

4

2

0

L

M
2

  
(G

e
V

2
)

2-2012
8820A12

n=3 n=2 n=1 n=0

N(2220)

N(1720)
N(1710)

N(1440)

N(940)

N(1900)

N(1680)

0 2 4
0

2

4

6

L

M
2

  
(G

e
V

2
)

2-2012
8820A3

Δ(2420)

n=0n=1n=2n=3

Δ(1950)

Δ(1920)

Δ(1600)

Δ(1232)

Δ(1910)

Δ(1905)

Example: Orbital and radial excitations for positive parity N and ∆ baryon families (
√
λ ' 0.5 GeV)
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Many thanks !
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