Systematics of the Hadron Spectrum from Conformal

Quantum Mechanics and Holographic QCD

Guy F. de Téramond

Universidad de Costa Rica

Twelfth Workshop on Non-Perturbative
Quantum Chromodynamics
Institut d'Astrophysique de Paris
June 10-13, 2013

In collaboration with Stan Brodsky (SLAC) and Hans G. Dosch (Heidelberg)

1 Effective Confinement from Underlying Conformal Invariance

[S. J. Brodsky, GdT and H.G. Dosch, arXiv:1302.4105]

- Incorporate in an effective theory the fundamental dilatation symmetry of the 4-dim QCD Lagrangian in the chiral limit of massless quarks
- Invariance properties of one dimensional field theory under the full conformal group from dAFF action [V. de Alfaro, S. Fubini and G. Furlan (dAFF) [Nuovo Cim. A 34, 569 (1976)]

$$
S=\frac{1}{2} \int d t\left(\dot{Q}^{2}-\frac{g}{Q^{2}}\right)
$$

where g is a dimensionless number (Casimir operator which depends on the representation)

- The equation of motion

$$
\ddot{Q}-\frac{g}{Q^{3}}=0
$$

and the generator of evolution in t, the Hamiltonian

$$
H_{t}=\frac{1}{2}\left(\dot{Q}^{2}+\frac{g}{Q^{2}}\right)
$$

follow from the dAFF action

- Absence of dimensional constants implies that the action

$$
S=\frac{1}{2} \int d t\left(\dot{Q}^{2}-\frac{g}{Q^{2}}\right)
$$

is invariant under a larger group of transformations, the general conformal group

$$
t^{\prime}=\frac{\alpha t+\beta}{\gamma t+\delta}, \quad Q^{\prime}\left(t^{\prime}\right)=\frac{Q(t)}{\gamma t+\delta}
$$

with $\alpha \delta-\beta \gamma=1$

- Applying Noether's theorem obtain conserved operators
i) Translations: $H_{t}=\frac{1}{2}\left(\dot{Q}^{2}+\frac{g}{Q^{2}}\right)$
ii) Dilatations: $D=t H_{t}-\frac{1}{2} Q \dot{Q}$
iii) Special conformal transformations: $K=t^{2} H_{t}-t Q \dot{Q}+\frac{1}{2} Q^{2}$
- Any combination of the generators H_{t}, D and K

$$
G=u H_{t}+v D+\omega K
$$

is also a constant of motion

- TIme evolution for state vector and field operator for dAFF generator G from canonical quantization $[Q(t), \dot{Q}(t)]=i$

$$
\begin{gathered}
G|\psi(t)\rangle=i f(t) \frac{d}{d t}|\psi(t)\rangle \\
i[G, Q(t)]=f(t) \frac{d Q(t)}{d t}-\frac{1}{2} \frac{d f(t)}{d t} Q(t)
\end{gathered}
$$

where $\quad f(t)=u+v t+w t^{2}$

- dAFF introduce new time variable τ and field operator $q(\tau)$

$$
d \tau=\frac{d t}{u+v t+w t^{2}}, \quad q(\tau)=\frac{Q(t)}{\left[u+v t+w t^{2}\right]^{\frac{1}{2}}}
$$

- Find usual quantum mechanical evolution for time τ

$$
\begin{gathered}
G|\psi(\tau)\rangle=i \frac{d}{d \tau}|\psi(\tau)\rangle \\
i[G, q(\tau)]=\frac{d q(\tau)}{d \tau}
\end{gathered}
$$

and usual equal-time quantization $[q(t), \dot{q}(t)]=i$

- In terms of τ and $q(\tau)$

$$
\begin{aligned}
S & =\frac{1}{2} \int d t\left(\dot{Q}^{2}-\frac{g}{Q^{2}}\right) \\
& =\frac{1}{2} \int d \tau\left(\dot{q}^{2}-\frac{g}{q^{2}}-\frac{4 u \omega-v^{2}}{4} q^{2}\right)+\text { surface term }
\end{aligned}
$$

Action is conformal invariant invariant up to a surface term !

- The corresponding Hamiltonian

$$
H_{\tau}=\frac{1}{2}\left(\dot{q}^{2}+\frac{g}{q^{2}}+\frac{4 u \omega-v^{2}}{4} q^{2}\right)
$$

is a compact operator for

$$
\frac{4 u \omega-v^{2}}{4}>0
$$

- Scale appears in the Hamiltonian without affecting the conformal invariance of the action !

Conformal Quantum Mechanics

- The Schrödingier picture follows from the representation of q and $p=\dot{q} \quad$ (dAFF)

$$
q \rightarrow x, \quad \dot{q} \rightarrow-i \frac{d}{d x}
$$

- Schrödinger wave equation determines evolution of bound states in terms of the variable τ

$$
i \frac{\partial}{\partial \tau} \psi(x, \tau)=H_{\tau}\left(x,-i \frac{d}{d x}\right) \psi(x, \tau)
$$

- dAFF Hamiltonian

$$
H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u \omega-v^{2}}{4} x^{2}\right)
$$

2 Light Front Dynamics

- On shell relation $P_{\mu} P^{\mu}=P^{-} P^{+}-\mathbf{P}_{\perp}^{2}=M^{2}$ leads to dispersion relation for LF Hamiltonian P^{-}

$$
P^{-}=\frac{\mathbf{P}_{\perp}^{2}+M^{2}}{P^{+}}, \quad P^{+}>0, \quad P^{ \pm}=P^{0} \pm P^{3}
$$

- Hamiltonian equation for the relativistic bound state $\left(x^{+}=x^{0}+x^{3}\right.$ light-front time)

$$
i \frac{\partial}{\partial x^{+}}|\psi(P)\rangle=P^{-}|\psi(P)\rangle=\frac{M^{2}+\mathbf{P}_{\perp}^{2}}{P^{+}}|\psi(P)\rangle
$$

- Construct LF Lorentz invariant Hamiltonian $P^{2}=P^{-} P^{+}-\mathbf{P}_{\perp}^{2}$

$$
P_{\mu} P^{\mu}|\psi(P)\rangle=M^{2}|\psi(P)\rangle
$$

- LF quantization allows unambiguous definition of partonic content of hadrons (wave function)
- LF Hamiltonian equation for bound states has similar structure of AdS and dAFF equations: direct connection of QCD with AdS/CFT and conformal QM (dAFF) possible !

Semiclassical Approximation to QCD in the Light Front
[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Compute M^{2} from hadronic matrix element

$$
\left\langle\psi\left(P^{\prime}\right)\right| P_{\mu} P^{\mu}|\psi(P)\rangle=M^{2}\left\langle\psi\left(P^{\prime}\right) \mid \psi(P)\right\rangle
$$

- To first approximation LF dynamics depends only on the invariant variable $\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$
- Factor angular φ, longitudinal $X(x)$ and transverse mode $\phi(\zeta)$

$$
\psi(x, \zeta, \varphi)=e^{i L \varphi} X(x) \frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}}
$$

- Ultra relativistic limit $m_{q} \rightarrow 0$ longitudinal modes $X(x)$ decouple $\left(L=L^{z}\right)$

$$
M^{2}=\int d \zeta \phi^{*}(\zeta) \sqrt{\zeta}\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1}{\zeta} \frac{d}{d \zeta}+\frac{L^{2}}{\zeta^{2}}\right) \frac{\phi(\zeta)}{\sqrt{\zeta}}+\int d \zeta \phi^{*}(\zeta) U(\zeta) \phi(\zeta)
$$

where the confining forces from the interaction terms are summed up in the effective potential $U(\zeta)$

- LF eigenvalue equation $P_{\mu} P^{\mu}|\phi\rangle=M^{2}|\phi\rangle$ is a LF wave equation for ϕ

$$
(\underbrace{-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}}_{\text {kinetic energy of partons }}+\underbrace{U(\zeta)}_{\text {confinement }}) \phi(\zeta)=M^{2} \phi(\zeta)
$$

- Effective relativistic and frame-independent LF Schrödinger equation, U is instantaneous in LF time
- The $S O(2)$ Casimir L^{2} corresponds to group of rotations in transverse LF plane
- Semiclassical approximation to LF QCD does not account for particle creation and absorption
- Compare with dAFF Hamiltonian

$$
H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u \omega-v^{2}}{4} x^{2}\right)
$$

- Identical with LF Hamiltonian provided x is identified with the LF variable $\zeta: x=\zeta / \sqrt{2}, g$ with the LF orbital angular momentum $L: g=L^{2}-1 / 4$ with effective LF confining interaction $U \sim \lambda^{2} \zeta^{2}$

3 Higher Integer-Spin Wave Equations in AdS Space and Light Front Holographic Mapping

$$
\mathcal{R}_{N K L M}=-\frac{1}{R^{2}}\left(g_{N L} g_{K M}-g_{N M} g_{K L}\right)
$$

- Why is AdS space important?
AdS_{5} is a space of maximal symmetry, negative curvature and a four-dim boundary: Minkowski space
- Isomorphism of $S O(4,2)$ group of conformal transformations with generators $P^{\mu}, M^{\mu \nu}, K^{\mu}, D$ with the group of isometries of AdS_{5}

Dim isometry group of $\operatorname{AdS}_{d+1}: \frac{(d+1)(d+2)}{2}$

- AdS $_{5}$ metric $x^{M}=\left(x^{\mu}, z\right)$:

$$
d s^{2}=g_{M N} d x^{M} d x^{N}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

- Since the AdS metric is invariant under a dilatation of all coordinates $x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, the variable z acts like a scaling variable in Minkowski space
- Short distances $x_{\mu} x^{\mu} \rightarrow 0$ maps to UV conformal AdS $_{5}$ boundary $z \rightarrow 0$
- Large confinement dimensions $x_{\mu} x^{\mu} \sim 1 / \Lambda_{\mathrm{QCD}}^{2}$ map to large IR region of $\mathrm{AdS}_{5}, z \sim 1 / \Lambda_{\mathrm{QCD}}$, thus there is a maximum separation of quarks and a maximum value of z

Higher Spin Wave Equations in AdS Space

[GdT, H.G. Dosch and S. J. Brodsky, PRD 87, 075004 (2013)]

- Description of higher spin modes in AdS space (Frondsal, Fradkin and Vasiliev)
- Integer spin- J fields in AdS conveniently described by tensor field $\Phi_{N_{1} \cdots N_{J}}$ with effective action

$$
\begin{aligned}
& S_{e f f}=\int d^{d} x d z \sqrt{|g|} e^{\varphi(z)} g^{N_{1} N_{1}^{\prime}} \cdots g^{N_{J} N_{J}^{\prime}}\left(g^{M M^{\prime}} D_{M} \Phi_{N_{1} \ldots N_{J}}^{*} D_{M^{\prime}} \Phi_{N_{1}^{\prime} \ldots N_{J}^{\prime}}\right. \\
&\left.-\mu_{e f f}^{2}(z) \Phi_{N_{1} \ldots N_{J}}^{*} \Phi_{N_{1}^{\prime} \ldots N_{J}^{\prime}}\right)
\end{aligned}
$$

where D_{M} is the covariant derivative which includes affine connection

- The z-dependent effective AdS mass $\mu_{\text {eff }}(z)$ can absorb the contribution from different contractions in the action and is a priori unknown
- Effective mass $\mu_{\text {eff }}(z)$ allows a separation of kinematical and dynamical effects and is determined by precise mapping to light-front physics
- Non-trivial geometry of pure AdS encodes the kinematics and the additional deformations of AdS encode the dynamics, including confinement
- Physical hadron has plane-wave and polarization indices along $3+1$ physical coordinates

$$
\Phi_{P}(x, z)_{\mu_{1} \cdots \mu_{J}}=e^{i P \cdot x} \Phi(z)_{\mu_{1} \cdots \mu_{J}}, \quad \Phi_{z \mu_{2} \cdots \mu_{J}}=\cdots=\Phi_{\mu_{1} \mu_{2} \cdots z}=0
$$

with four-momentum P_{μ} and invariant hadronic mass $P_{\mu} P^{\mu}=M^{2}$

- Further simplification by using a local Lorentz frame with tangent indices
- Variation of the action gives AdS wave equation for spin- J field $\Phi(z)_{\nu_{1} \cdots \nu_{J}}=\Phi_{J}(z) \epsilon_{\nu_{1} \cdots \nu_{J}}$

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi}(z)}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{m R}{z}\right)^{2}\right] \Phi_{J}=M^{2} \Phi_{J}
$$

with

$$
(m R)^{2}=\left(\mu_{e f f}(z) R\right)^{2}-J z \varphi^{\prime}(z)+J(d-J+1)
$$

and the kinematical constraints

$$
\eta^{\mu \nu} P_{\mu} \epsilon_{\nu \nu_{2} \cdots \nu_{J}}=0, \quad \eta^{\mu \nu} \epsilon_{\mu \nu \nu_{3} \cdots \nu_{J}}=0
$$

- Kinematical constrains in the LF imply that m must be a constant
[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]

Light-Front Mapping

[GdT and S. J. Brodsky, PRL 102, 081601 (2009)]

- Upon substitution $\Phi_{J}(z) \sim z^{(d-1) / 2-J} e^{-\varphi(z) / 2} \phi_{J}(z)$ and $z \rightarrow \zeta$ in AdS WE

$$
\left[-\frac{z^{d-1-2 J}}{e^{\varphi(z)}} \partial_{z}\left(\frac{e^{\varphi(z)}}{z^{d-1-2 J}} \partial_{z}\right)+\left(\frac{m R}{z}\right)^{2}\right] \Phi_{J}(z)=M^{2} \Phi_{J}(z)
$$

we find LFWE $\quad(d=4)$

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

with

$$
U(\zeta)=\frac{1}{2} \varphi^{\prime \prime}(\zeta)+\frac{1}{4} \varphi^{\prime}(\zeta)^{2}+\frac{2 J-3}{2 z} \varphi^{\prime}(\zeta)
$$

and $\quad(m R)^{2}=-(2-J)^{2}+L^{2}$

- Unmodified AdS equations correspond to the kinetic energy terms of the partons inside a hadron
- Interaction terms in the QCD Lagrangian build the effective confining potential $U(\zeta)$ and correspond to the truncation of AdS space in an effective dual gravity approximation
- AdS Breitenlohner-Freedman bound $(m R)^{2} \geq-4$ equivalent to LF QM stability condition $L^{2} \geq 0$

Meson Spectrum

- Dilaton profile in the dual gravity model is also determined from conformal QM (dAFF) !

$$
\varphi(z)=\lambda z^{2}, \quad \lambda^{2}=\frac{4 u \omega-v^{2}}{16}
$$

- Effective potential: $U=\lambda^{2} \zeta^{2}+2 \lambda(J-1)$
- LFWE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\lambda^{2} \zeta^{2}+2 \lambda(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=|\lambda|^{(1+L) / 2} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-|\lambda| \zeta^{2} / 2} L_{n}^{L}\left(|\lambda| \zeta^{2}\right)
$$

- Eigenvalues for $\lambda>0$

$$
\mathcal{M}_{n, J, L}^{2}=4 \lambda\left(n+\frac{J+L}{2}\right)
$$

- For $\lambda<0, \quad M^{2}=-4 \lambda(n+1+(L-J) / 2)$, incompatible with the LF constituent interpretation of hadronic states

LFWFs $\phi_{n, L}(\zeta)$ in physical space-time: (L) orbital modes and (R) radial modes

Table 1: $I=1$ mesons. For a $q \bar{q}$ state $P=(-1)^{L+1}, C=(-1)^{L+S}$

L	S	n	$J^{P C}$	$I=1$ Meson
0	0	0	0^{-+}	$\pi(140)$
0	0	1	0^{-+}	$\pi(1300)$
0	0	2	0^{-+}	$\pi(1800)$
0	1	0	1^{--}	$\rho(770)$
0	1	1	1^{--}	$\rho(1450)$
0	1	2	1^{--}	$\rho(1700)$
1	0	0	1^{+-}	$b_{1}(1235)$
1	1	0	0^{++}	$a_{0}(980)$
1	1	1	0^{++}	$a_{0}(1450)$
1	1	0	1^{++}	$a_{1}(1260)$
1	1	0	2^{++}	$a_{2}(1320)$
2	0	0	2^{-+}	$\pi_{2}(1670)$
2	0	1	2^{-+}	$\pi_{2}(1880)$
2	1	0	3^{--}	$\rho_{3}(1690)$
3	1	0	4^{++}	$a_{4}(2040)$

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \lambda(n+L+S / 2)$

Orbital and radial excitations for the $\pi(\sqrt{\lambda}=0.59 \mathrm{GeV})$ and the $\rho \mathrm{I}=1$ meson families $(\sqrt{\lambda}=0.54 \mathrm{GeV})$

$$
\mathcal{M}_{n, J, L}^{2}=4 \lambda\left(n+\frac{J+L}{2}\right)
$$

- Triplet splitting for vector meson a-states ($L=1, J=0,1,2$)

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

- Systematics of $I=1$ light meson spectra - orbital and radial excitations as well as important $J-L$ splitting, well described by light-front harmonic confinement model
- Linear Regge trajectories, a massless pion and relation between the ρ and a_{1} mass $M_{a_{1}} / M_{\rho}=\sqrt{2}$ usually obtained from Weinberg sum rules [Weinberg (1967)]

4 Higher Half-Integer Spin Wave Equations in AdS Space and Light-Front Holographic Mapping

[J. Polchinski and M. J. Strassler, JHEP 0305, 012 (2003)]
[GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[GdT, H.G. Dosch and S. J. Brodsky, PRD 87, 075004 (2013)]

Image credit: N. Evans

- The gauge/gravity duality can give important insights into the strongly coupled dynamics of nucleons using simple analytical methods: analytical exploration of systematics of light-baryon resonances
- Extension of holographic ideas to spin- $\frac{1}{2}$ (and higher half-integral J) hadrons by considering wave equations for Rarita-Schwinger spinor fields in AdS space and their mapping to light-front physics

$$
\zeta=\sqrt{\frac{x}{1-x}}\left|\sum_{j=1}^{n-1} x_{j} \mathbf{b}_{\perp j}\right|
$$

where $x=x_{n}$ is the longitudinal momentum fraction of the active quark

- LF clustering decomposition: Same multiplicity of states for mesons and baryons !
- Half-integer spin $J=T+\frac{1}{2}$ conveniently represented by RS spinor $\left[\Psi_{N_{1} \cdots N_{T}}\right]_{\alpha}$ with effective AdS action

$$
\begin{aligned}
S_{e f f}=\frac{1}{2} \int d^{d} x d z \sqrt{|g|} & g^{N_{1} N_{1}^{\prime} \cdots g^{N_{T} N_{T}^{\prime}}} \\
& {\left[\bar{\Psi}_{N_{1} \cdots N_{T}}\left(i \Gamma^{A} e_{A}^{M} D_{M}-\mu-\rho(z)\right) \Psi_{N_{1}^{\prime} \cdots N_{T}^{\prime}}+\text { h.c. }\right] }
\end{aligned}
$$

where the covariant derivative D_{M} includes the affine connection and the spin connection

- e_{M}^{A} is the vielbein and Γ^{A} tangent space Dirac matrices $\left\{\Gamma^{A}, \Gamma^{B}\right\}=\eta^{A B}$
- For fermions one cannot introduce confinement with dilaton since it can be scaled away [I. Kirsch (2006)]
- Introduce effective interaction $\rho(z)$ constrained by the condition that the square of the Dirac equation leads to harmonic confinement (dAFF)
- Linear covariant derivatives in the action prevents mixing between dynamical and kinematical effects
- In contrast with effective action for integer spin, the AdS mass μ is constant: systematics of meson and baryon spectrum different!
- Physical baryons have spinors, and T polarization indices along $3+1$ physical coordinates

$$
\Psi_{\mu_{1} \cdots \mu_{T}}, \quad \Psi_{z \mu_{2} \cdots \mu_{T}}=\cdots=\Psi_{\mu_{1} \mu_{2} \cdots z}=0
$$

- Further simplification by using a local Lorentz frame with tangent indices
- Variation of the action gives AdS wave equation for spin- J field $\Psi_{\nu_{1} \cdots \nu_{J}}$

$$
\left[i\left(z \eta^{M N} \Gamma_{M} \partial_{N}+\frac{d-2 T}{2} \Gamma_{z}\right)-\mu R-R \rho(z)\right] \Psi_{\nu_{1} \ldots \nu_{T}}=0
$$

and the Rarita-Schwinger condition

$$
\gamma^{\nu} \Psi_{\nu \nu_{2} \ldots \nu_{T}}=0
$$

[See also: T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012)]

Light-Front Mapping

- A physical baryon satisfies the Rarita-Schwinger equation for spinors in physical space-time

$$
\left(i \gamma^{\mu} \partial_{\mu}-M\right) u_{\nu_{1} \cdots \nu_{T}}(P)=0, \quad \gamma^{\nu} u_{\nu \nu_{2} \cdots \nu_{T}}(P)=0
$$

- Upon substitution in AdS wave equation for spin $J \quad\left(u^{ \pm}\right.$chiral spinors)

$$
\Psi_{\nu_{1} \cdots \nu_{T}}^{ \pm}(x, z)=e^{i P \cdot x}\left(\frac{R}{z}\right)^{T-d / 2} \psi_{T}^{ \pm}(z) u_{\nu_{1} \cdots \nu_{T}}^{ \pm}(P)
$$

and $z \rightarrow \zeta$ find LFWE

$$
\begin{aligned}
-\frac{d}{d \zeta} \psi_{-}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}-V(\zeta) \psi_{-} & =M \psi_{+} \\
\frac{d}{d \zeta} \psi_{+}-\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}-V(\zeta) \psi_{+} & =M \psi_{-}
\end{aligned}
$$

provided that $|\mu R|=\nu+\frac{1}{2}$ and $\psi_{T}^{ \pm}=\psi_{ \pm}$with effective LF potential

$$
V(\zeta)=\frac{R}{\zeta} \rho(\zeta)
$$

a J-independent potential - No spin-orbit coupling along a given trajectory !

Baryon Spectrum

- Choose linear potential $V=\lambda \zeta, \quad \lambda>0$ from underlying conformality of the theory (dAFF)
- Eigenfunctions

$$
\psi_{+}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\lambda \zeta^{2} / 2} L_{n}^{\nu}\left(\lambda \zeta^{2}\right), \quad \psi_{-}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\lambda \zeta^{2} / 2} L_{n}^{\nu+1}\left(\lambda \zeta^{2}\right)
$$

- Eigenvalues

$$
M^{2}=4 \lambda(n+\nu+1)
$$

- Gap scale 4λ determines trajectory slope and spectrum gap between plus-parity spin- $\frac{1}{2}$ and minus-parity spin- $\frac{3}{2}$ nucleon families !
- For nucleons $\quad \nu_{1 / 2}^{+}=L, \quad \nu_{3 / 2}^{-}=L+1$, where L is the relative LF angular momentum between the active quark and spectator cluster
- For $\lambda<0$ no solution possible

- Phenomenological identification to describe the full baryon spectrum: plus and negative sectors have internal spin $S=\frac{1}{2}$ and $S=\frac{3}{2}$

$$
\begin{array}{ll}
\nu_{1 / 2}^{+}=L, & \nu_{3 / 2}^{+}=L+1 / 2 \\
\nu_{1 / 2}^{-}=L+1 / 2, & \nu_{3 / 2}^{-}=L+1
\end{array}
$$

Example: Orbital and radial excitations for positive parity N and Δ baryon families ($\sqrt{\lambda} \simeq 0.5 \mathrm{GeV}$)

Many thanks !

