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Looking for BFKL/saturation effects

Looking for BFKL effects (x-resummation) at HERA/LHC in dedicated final
states



Forward jet measurement at HERA
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• Full BFKL NLL calculation used for the BFKL kernel, available in S3
and S4 resummation schemes to remove the spurious singularities
(modulo the impact factors taken at LL)

• Equation:
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• Implicit equation: χeff (γ, α) = χNLL(γ, α, χeff (γ, α)) solved
numerically



Comparison with H1 triple differential data

d σ/dx dpT
2 d Q2 - H1 DATA
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Mueller Navelet jets

Same kind of processes at the Tevatron and the LHC
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• Same kind of processes at the Tevatron and the LHC: Mueller Navelet
jets

• Study the ∆Φ between jets dependence of the cross section:



Mueller Navelet jets: ∆Φ dependence

• Study the ∆Φ dependence of the relative cross section

• Relevant variables:

∆η = y1 − y2

y = (y1 + y2)/2

Q =
√

k1k2

R = k2/k1

• Azimuthal correlation of dijets:

2π
dσ

d∆ηdRd∆Φ

/

dσ

d∆ηdR
= 1 +

2

σ0(∆η,R)

∞
∑

p=1

σp(∆η,R) cos(p∆Φ)

where

σp =
∫

∞

ET

dQ

Q3
αs(Q

2/R)αs(Q
2R)

(
∫ y>

y<
dyx1feff (x1, Q

2/R)x2feff (x2, Q
2R)

)

∫ 1/2+∞

1/2−∞

dγ

2iπ
R−2γ eᾱ(Q
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Mueller Navelet jets: ∆Φ dependence

• 1/σdσ/d∆Φ spectrum for BFKL LL and BFKL NLL as a function of
∆Φ for different values of ∆η, scale dependence: ∼20%
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Effect of energy conservation on BFKL equation

• BFKL cross section lacks energy-momentum conservation since these
effects are higher order corrections

• Following Del Duca-Schmidt, we substitute ∆η by an effective rapidity
interval yeff
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where dσO(α3
s) is the exact 2→3 contribution to the hh→JXJ

cross-section at order α3
s, and dσLL−BFKL is the LL-BFKL result

• To compute dσO(α3
s), we use the standard jet cone size Rcut=0.5 when

integrating over the third particle’s momentum



Mueller Navelet cross sections: energy conservation effect in BFKL

• Effect of energy conservation on BFKL dynamics

• Large effect if jet pT ratios not close to 1: goes closer to DGLAP
predictions, needs jet pT ratio < 1.1-1.15
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ATLAS “jet veto” measurement: sign of BFKL?

• Select events with two high pT jets, well separated in rapidity by ∆y

• Veto on additional jet activity (with kT > Q0, with Q0 ≫ ΛQCD)
between the two jets

• Measure the “gap” fraction: dijet events with jet veto / total dijet
events



Comparison with QCD calculation

• The standard NLO and parton shower approach (POWHEG + pythia or
herwig) fails to describe data

(dσ2→2 + dσ2→3)pT3<Eout

dσ2→2 + dσ2→3

• BFKL resummation (HEJ Monte Carlo) also fails to describe data

• Both approaches miss the resummation of soft gluons at large angles



Gluon emission at large angles

• Resummation of soft gluon emissions at large angle not taken into
account in parton showers

• Resummation of soft emissions performed in e+e− case: when
pT ≫ Eout, one can resum the soft logarithms (αS log pT/Eout)

n while
requiring that the energy flow into the region between the jets is less
than Eout



Banfi Marchesini Smye equation

• Compute the probability PT that the total energy emitted outside the
jet cone is less than Eout

• Numerical solutions are available (Hatta and Ueda, 2009)



Comparison with ATLAS data

• Good agreement between prediction and ATLAS data (black points
when the most forward and backward jets are selected and Eout=20
GeV)

• Plot as a function of ∆y between jets in different jet pT bins

• Green band: renormalisation and factorisation scale uncertainties
(between 2pT and pT/2); yellow band: uncertainties related to
sub-leading logs



Comparison with ATLAS data

• Good agreement between prediction and ATLAS data (black points
when the most forward and backward jets are selected and Eout=20
GeV)

• Plot as a function of jet pT in different ∆y bins

• Measurement not sensitive to BFKL effects



Jet gap jet cross sections
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• Test of BFKL evolution: jet gap jet events, large ∆η, same pT for
both jets in BFKL calculation

• Principle: Implementation of BFKL NLL formalism in HERWIG Monte
Carlo (Measurement sensitive to jet structure and size, gap size smaller
than ∆η between jets)



BFKL formalism

• BFKL jet gap jet cross section: integration over ξ, pT performed in
Herwig event generation
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• αS: 0.17 at LL (constant), running using RGE at NLL

• BFKL effective kernel χeff : determined numerically, solving the implicit
equation: χeff = χNLL(γ, ᾱ χeff )

• S4 resummation scheme used to remove spurious singularities in BFKL
NLL kernel

• Implementation in Herwig Monte Carlo: needed to take into account jet
size and at parton level the gap size is equal to ∆η between jets

• Herwig MC: Parametrised distribution of dσ/dp2T fitted to BFKL NLL
cross section (2200 points fitted between 10 < pT < 120 GeV,
0.1 < ∆η < 10 with a χ2 ∼ 0.1)



BFKL formalism: resummation over conformal spins

• Study of the ratio dσ/dpT (all p)
dσ/dpT (p=0)

• Resummation over p needed: modifies the pT and ∆η dependences...:

2

4

6

8

10

12

20 40 60 80 100 120 140

BFKL NLL all p / p=0
∆η=3

∆η=4

∆η=5

∆η=6

∆η=7
∆η=8
∆η=9
∆η=10



Comparison with D0 data

• D0 measurement: Jet gap jet cross section ratios as a function of
second highest ET jet, or ∆η for the low and high ET samples, the gap
between jets being between -1 and 1 in rapidity

• Comparison with BFKL formalism:

Ratio =
BFKL NLL Herwig

Dijet Herwig
×

LO QCD NLOJet++

NLO QCD NLOJet++

• Reasonable description using BFKL NLL formalism
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Predictions for the LHC

• Weak ET and ∆η dependence

• Large differences in normalisation between BFKL LL and NLL
predictions
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Jet gap jet events in diffraction

• Study BFKL dynamics using jet gap jet events

• Jet gap jet events in DPE processes: clean process, allows to go to
larger ∆η between jets

• See: Gaps between jets in double-Pomeron-exchange processes at the
LHC, C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik,
ArXiv:1212:2059, accepted by Phys. Rev. D



Jet gap jet events in diffraction

• Measure the ratio of the jet gap jet to the dijet cross sections:
sensitivity to BFKL dynamics

• As an example, study as a function of leading jet pT

• Advantage: ratio close to 10% (no survival probability), very clean
events since jets not “polluted” by remnants)



Conclusion

• Full implementation of BFKL NLL kernel for many jet proceeses at
HERA, Tevatron and LHC

• Forward jets at HERA: DGLAP NLO fails to describe HERA data, good
description of data using BFKL NLL formalism

• Mueller Navelet jets: Larger decorrelation expected for BFKL
formalism, unfortunately suffers a lot of corrections intriduced when
ones imposes the conservation of energy in the BFKL formalism (see
Phys. Rev. D79 (2009) 034028)

• Jet veto measurements in ATLAS: related to QCD radiation outside
jets, not to BFKL resummation effects

• Jet gap jets:

– NLL BFKL cross section implemented in HERWIG

– Fair description of D0 and CDF data

– Jet gap jet events in diffraction to be measured at the LHC



Parenthesis: LHC Forward Physics Working Group

• Motivation: New working groups aim at producing a strong physics
case to be used within each experiment and in front of LHCC

• Aim: Common strategy between the different experiments and common
requests to the LHC (special runs...)

• New detectors to be added (forward proton detectors, scintillators for a
better coverage in rapidity...), better understanding of the forward
region...

• Web page location:
http://lpcc.web.cern.ch/lpcc/index.php?page=fwd wg under the LPCC
series of working groups (Michelangelo Mangano); meetings are
anounced, twiki to be built

• If interested, please register at:
http://simba3.web.cern.ch/simba3/SelfSubscription.aspx?
groupName=lhc-fwdlhcwg

• The final output (April-May 2014) will be a CERN yellow report
submitted to the LHCC: theory, phenomenology, simulation results



LHC Forward Physics Working Group

• New physics or topics related to searches (mostly high lumi):

– Understanding underlying events (forward detectors)

– Central exclusive production (jets, Higgs..) with proton tagging

– Electroweak vector scattering (γγ → WW , anomalous coupling)

• Understanding the Standard model (QCD)

– Totem/Alfa: total cross section, elastic scattering, soft diffraction

– BFKL : jet-gap-jet, hard color singlet exchange; Mueller-Navelet jets)

– Single hard diffraction

– Monte Carlo in forward direction, including rapidity gaps

– Double Pomeron with hard scale (inclusive, Pomeron structure
function)

– Gamma-Pomeron, with and without hard scale

– Drell-Yan in the forward direction (small-x, saturation)

– pA and AA: saturation, CGC

– Shower development and Cosmic Ray: LHCf and forward proton
fragmentation

– Role of light mass state in Exclusive production



Working groups and conveners

• Chair: Nicolo Cartiglia (CMS), Christophe Royon (ATLAS)

• Steering group with representants from all LHC experiments

• Three different working groups:

– “Low” luminosity (up to a few 10 pb−1); Lucian Harland Lang (theory,
Co-chair), Valery Khoze (theory), Martin Poghosyan (Alice), Tim
Martin (ATLAS, Co-chair), Antonio Vilela (CMS), Dima Volyanskyy
(LHCb), Takashi Sako (LHCf), Alessia Tricomi (LHCf), Valentina
Avati (Totem)

– “Medium” luminosity (up to a few 100 pb−1); Cyrille Marquet
(theory), Jochen Bartels (theory, Co-chair), Gerardo Herrera (Alice),
Christophe Royon (ATLAS), Nicolo Cartiglia (CMS), Ronan McNulty
(LHCb), Paula Collins (LHCb, Co-chair), Ken Osterberg (TOTEM)

– “High” Luminosity (a few 100 fb−1); Rikard Enberg (theory), Antoni
Szczurek (theory Co-chair), Jonathan Hollar (CMS, Co-chair), Risto
Orava (TOTEM), Rafal Staszewski (Atlas)



Working Group Meetings

• 2 day meetings every 4-5 weeks (longer for meetings outside): half day
for each working group, 1 half day for common sessions and summary
of the 3 working group activities

• May 15-16: CERN

• July 15-18: Reggio de Calabria, Italy, please register at
http://www-d0.fnal.gov/ royon/diffraction calabria; preliminary agenda
from working groups by mid-June, final version by 1st week of July; 1
day per WG

• August 26-27: CERN

• October 16-17: CERN

• November 18-19-20: Cracow

• January 14-15: CERN

• Last week of February - 1st week of March: CERN

• End of April?: Trento (tbc)


