2023
-
Sundaram Buitrago, P. A., Rao, K., & Yajima, M. (2023). Vasa, a regulator of localized mRNA translation on the spindle. BioEssays, 2300004. https://doi.org/10.1002/bies.202300004
- Noyes, C., Kitajima, S., Li, F., Suita, Y., Miriyala, S., Isaac, S., Ahsan, N., Knelson, E., Vajdi, A., Tani, T., Thai, T. C., Xu, D., Murai, J., Tapinos, N., Takahashi, C., Barbie, D. A., & Yajima, M. (2023). The germline factor DDX4 contributes to the chemoresistance of small cell lung cancer cells. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04444-7
2022
-
Kitajima, S., Tani, T., Springer, B. F., Campisi, M., Osaki, T., Haratani, K., Chen, M., Knelson, E. H., Mahadevan, N. R., Ritter, J., Yoshida, R., Köhler, J., Ogino, A., Nozawa, R. S., Sundararaman, S. K., Thai, T. C., Homme, M., Piel, B., Kivlehan, S., … Barbie, D. A. (2022). MPS1 inhibition primes immunogenicity of KRAS-LKB1 mutant lung cancer. Cancer Cell, 40(10), 1128-1144.e8. https://doi.org/10.1016/j.ccell.2022.08.015
-
Fernandez-Nicolas, A., Uchida, A., Poon, J., & Yajima, M. (2022). Vasa nucleates asymmetric translation along the mitotic spindle during unequal cell divisions. Nature Communications 2022 13:1, 13(1), 1–15. https://doi.org/10.1038/s41467-022-29855-8
-
Emura, N., & Yajima, M. (2022). Micromere formation and its evolutionary implications in the sea urchin. Current Topics in Developmental Biology, 146, 211–238. https://doi.org/10.1016/BS.CTDB.2021.10.008
2021
-
Wessel, G. M., Wada, Y., Yajima, M., & Kiyomoto, M. (2021). Bindin is essential for fertilization in the sea urchin. Proceedings of the National Academy of Sciences of the United States of America, 118(34). https://doi.org/10.1073/PNAS.2109636118/VIDEO-4
- Wavreil, F.D.M., Poon, J., Wessel, G. M., & Yajima, M. (2021). Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin. Developmental biology, 478, 13–24. https://doi.org/10.1016/j.ydbio.2021.06.006
- Xu, D., Wavreil, F., Waldron, A., & Yajima, M. (2021). Functional contribution of DCLKs in sea urchin development. Developmental dynamics : an official publication of the American Association of Anatomists, 250(8), 1160–1172. https://doi.org/10.1002/dvdy.316
-
Pieplow, A., Dastaw, M., Sakuma, T., Sakamoto, N., Yamamoto, T., Yajima, M., Oulhen, N., & Wessel, G. M. (2021). CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin. Developmental Biology, 472, 85–97. https://doi.org/10.1016/J.YDBIO.2021.01.003
2020
- Waldron, A., & Yajima, M. (2020). Localized translation on the mitotic apparatus: A history and perspective. Developmental biology, 468(1-2), 55–58. https://doi.org/10.1016/j.ydbio.2020.09.010
- Wavreil FDM, Yajima M. Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. 2020. Dev Biol. 2020;S0012-1606(20)30198-6. doi:10.1016/j.ydbio.2020.07.004
-
Wessel GM, Kiyomoto M, Shen TL, Yajima M. Genetic manipulation of the pigment pathway in a sea urchin reveals distinct lineage commitment prior to metamorphosis in the bilateral to radial body plan transition. Sci Rep. 2020;10(1):1973. Published 2020 Feb 6. doi:10.1038/s41598-020-58584-5
2019
- Fernandez-Nicolas A, Xu D, Yajima M. A tumor suppressor Retinoblastoma1 is essential for embryonic development in the sea urchin. Dev Dyn. 2019;248(12):1273‐1285. doi:10.1002/dvdy.113
- Poon J, Fries A, Wessel GM, Yajima M. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins. Nat Commun. 2019;10(1):3779. Published 2019 Aug 22. doi:10.1038/s41467-019-11560-8
2018
- Uchida A, Yajima M. An optogenetic approach to control protein localization during embryogenesis of the sea urchin. Dev Biol. 2018;441(1):19‐30. doi:10.1016/j.ydbio.2018.06.015
2017
- Schudrowitz N, Takagi S, Wessel GM, Yajima M. Germline factor DDX4 functions in blood-derived cancer cell phenotypes. Cancer Sci. 2017;108(8):1612‐1619. doi:10.1111/cas.13299
- Shevidi S, Uchida A, Schudrowitz N, Wessel GM, Yajima M. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev Dyn. 2017;246(12):1036‐1046. doi:10.1002/dvdy.24586
2016
- Fresques T, Swartz SZ, Juliano C, et al. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification. Evol Dev. 2016;18(4):267‐278. doi:10.1111/ede.12197
- Poon J, Wessel GM, Yajima M. An unregulated regulator: Vasa expression in the development of somatic cells and in tumorigenesis. Dev Biol. 2016;415(1):24‐32. doi:10.1016/j.ydbio.2016.05.012
2015
- Yajima M, Wessel GM. Essential elements for translation: the germline factor Vasa functions broadly in somatic cells. Development. 2015;142(11):1960‐1970. doi:10.1242/dev.118448
- Yajima M, Wessel GM. Broad functions for the “germ-line factor” vasa. Mol. Reprod. Dev. 2015; 82 (6) : 405-405. doi.org/10.1002/mrd.22513
- Yajima M, Kiyomoto M, Wessel GM. The germ line begins as a single cluster of cells in the penta-radial juvenile starfish. Mol. Reprod. Dev. 2015; 82 (11) : 821-821. doi.org/10.1002/mrd.22594
2014
- Wessel GM, Fresques T, Kiyomoto M, Yajima M, Zazueta V. Origin and development of the germ line in sea stars. Genesis. 2014;52(5):367‐377. doi:10.1002/dvg.22772
- Yajima M, Gustafson EA, Song JL, Wessel GM. Piwi regulates Vasa accumulation during embryogenesis in the sea urchin. Dev Dyn. 2014;243(3):451‐458. doi:10.1002/dvdy.24096
- Wessel GM, Brayboy L, Fresques T, et al. The biology of the germ line in echinoderms. Mol Reprod Dev. 2014;81(8):679‐711. doi:10.1002/mrd.22223
2013
- Yajima M, Suglia E, Gustafson EA, Wessel GM. Meiotic gene expression initiates during larval development in the sea urchin. Dev Dyn. 2013;242(2):155‐163. doi:10.1002/dvdy.23904
- Oulhen N, Yoshida T, Yajima M, et al. The 3’UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin. Dev Biol. 2013;377(1):275‐283. doi:10.1016/j.ydbio.2013.01.019
2012
- Yajima M, Wessel GM. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin. Development. 2012;139(20):3786‐3794. doi:10.1242/dev.082230
- Yajima M, Fairbrother WG, Wessel GM. ISWI contributes to ArsI insulator function in development of the sea urchin. Development. 2012;139(19):3613‐3622. doi:10.1242/dev.081828
- Takagi H, Inai Y, Watanabe S, et al. Nucleosome exclusion from the interspecies-conserved central AT-rich region of the Ars insulator. J Biochem. 2012;151(1):75‐87. doi:10.1093/jb/mvr118
2011
- Gustafson EA, Yajima M, Juliano CE, Wessel GM. Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. Dev Biol. 2011;349(2):440‐450. doi:10.1016/j.ydbio.2010.10.031
- Yajima M, Wessel GM. Small micromeres contribute to the germline in the sea urchin. Development. 2011;138(2):237‐243. doi:10.1242/dev.054940
- Yajima M, Wessel GM. The DEAD-box RNA helicase Vasa functions in embryonic mitotic progression in the sea urchin. Development. 2011;138(11):2217‐2222. doi:10.1242/dev.065052
- Yajima M, Wessel GM. The multiple hats of Vasa: its functions in the germline and in cell cycle progression. Mol Reprod Dev. 2011;78(10-11):861‐867. doi:10.1002/mrd.21363
2010
- Sasakura Y, Yaguchi J, Yaguchi S, Yajima M. Excision and transposition activity of Tc1/mariner superfamily transposons in sea urchin embryos. Zoolog Sci. 2010;27(3):256‐262. doi:10.2108/zsj.27.256
- Yajima M, Umeda R, Fuchikami T, et al. Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells. Zoolog Sci. 2010;27(8):638‐646. doi:10.2108/zsj.27.638
- Juliano CE, Yajima M, Wessel GM. Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo. Dev Biol. 2010;337(2):220‐232. doi:10.1016/j.ydbio.2009.10.030
2007
- Yajima M. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Dev Biol. 2007;307(2):272‐281. doi:10.1016/j.ydbio.2007.04.050
- Yajima M, Kiyomoto M, Akasaka K. Ars insulator protects transgenes from long-term silencing in sea urchin larva. Dev Genes Evol. 2007;217(4):331‐336. doi:10.1007/s00427-007-0140-9
- Yajima M. Evolutionary modification of mesenchyme cells in sand dollars in the transition from indirect to direct development. Evol Dev. 2007;9(3):257‐266. doi:10.1111/j.1525-142X.2007.00158.x
2006
- Yajima M, Kiyomoto M. Study of larval and adult skeletogenic cells in developing sea urchin larvae. Biol Bull. 2006;211(2):183‐192. doi:10.2307/4134592