APMA 2560 – Spring 2011
Numerical Solution of PDEs II
Instructor: Professor G.E. Karniadakis
*******************************************************************
Lecture #1
• Introduction to variational calculus – Examples
• Theory of the first (Gateaux) variation and the Euler-Lagrange equations
• Theory of the second (Gateaux) variation and Legendre’s necessary condition
• Variational problems with constraints
• Boundary Conditions – Examples
• Reading:
1. Introduction to the Calculus of Variations, by Hans Sagan (Dover).
2. Methods of Mathematical Physics, vol. 1, Courant & Hilbert, Chapter IV.
Numerical Solution of PDEs II
Instructor: Professor G.E. Karniadakis
*******************************************************************
Lecture #1
• Introduction to variational calculus – Examples
• Theory of the first (Gateaux) variation and the Euler-Lagrange equations
• Theory of the second (Gateaux) variation and Legendre’s necessary condition
• Variational problems with constraints
• Boundary Conditions – Examples
• Reading:
1. Introduction to the Calculus of Variations, by Hans Sagan (Dover).
2. Methods of Mathematical Physics, vol. 1, Courant & Hilbert, Chapter IV.