Probing the Structural Evolution of Medium-Sized Gold Clusters: Aun− (n = 27 to 35)
- Shao, W. Huang, Y. Gao, L. M. Wang, X. Li,L. S. Wang, and X. C. Zeng J. Am. Chem. Soc.132, 6596-6605 (2010). 323.pdf
Relativistic Effects and the Unique Low-Symmetry Structures of Gold Nanoclusters
- Huang, M. Ji, C. D. Dong, X. Gu, L. M. Wang, X. G. Gong, andL. S. Wang ACS Nano 2, 897-904 (2008). 279.pdf
Structural Transition from Pyramidal to Space-Filling Amorphous in Medium-Sized Gold Clusters: Aun− (n = 21−26)
- Bulusu, X. Li, L. S. Wang, and X. C. Zeng J. Phys. Chem. C111, 4190-4198 (2007). 256.pdf
Structural Transition of Gold Nanoclusters: From the Golden Cage to the Golden Pyramid
- Huang, S. Bulusu, R. Pal, X. C. Zeng, andL. S. Wang ACS Nano 3, 1225-1230 (2009). 302.pdf
Probing the 2D to 3D Structural Transition in Gold Cluster Anions Using Argon Tagging
- Huang andL. S. Wang
Phys. Rev. Lett. 102, 153401-1-4 (2009). 299.pdf
On the Electronic and Atomic Structures of Small AuN– (N = 4−14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study
- Häkkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, andL. S. Wang J. Phys. Chem.A107, 6168-6175 (2003). 164.pdf
Observation of Earlier Two to Three Dimensional Structural Transition in Gold Cluster Anions by Isoelectronic Substitution: MAun– (n = 8–11; M = Ag, Cu)
- M. Wang, R. Pal, W. Huang, X. C. Zeng, andL. S. Wang J. Chem. Phys.132, 114306-1-8 (2010). 319.pdf
Isomer Identification and Resolution in Small Gold Clusters
- Huang, R. Pal, L. M. Wang, X. C. Zeng, andL. S. Wang J. Chem. Phys.132, 054305-1-5 (2010). 317.pdf
Structural Evolution of Doped Gold Clusters: MAux– (M = Si, Ge, Sn; x = 5–8)
- Pal, L. M. Wang, W. Huang,L. S. Wang, and X. C. Zeng J. Am. Chem. Soc.131, 3396-3404 (2009). 296.pdf
Vibrationally-Resolved Photoelectron Spectroscopy of Di-Gold Carbonyl Clusters Au2(CO)n– (n = 1–3): Experiment and Theory
- L. Wang, H. J. Zhai L. Xu, J. Li, andL. S. Wang J. Phys. Chem. A114, 1247-1254 (2010)
On the Chemical Bonding of Gold in Auro-Boron Oxide Clusters AunBO– (n = 1−3)
- Y. Zubarev, A. I. Boldyrev, J. Li, H. J. Zhai, andL. S. Wang J. Phys. Chem. A111, 1648-1658 (2007). 254.pdf
A Photoelectron Spectroscopic and Computational Study of Sodium Auride Clusters, NanAun– (n = 1–3)
- F. Cui, Y. C. Lin, D. Sundholm, andL. S. Wang J. Chys. Chem.A111, 7555-7561 (2007). 264.pdf
Gold as Hydrogen. An Experimental and Theoretical Study of the Structures and Bonding in Di-Silicon Gold Clusters Si2Aun– and Si2Aun (n = 2 and 4) and Comparisons to Si2H2 and Si2H4
- Li, B. Kiran, andL. S. Wang J. Chys. Chem. A109, 4366-4374 (2005). 201.pdf
Chemisorption-Induced Structural Changes and Transition from Chemisorption to Physisorption in Au6(CO)n− (n = 4−9)
- J. Zhai, L. L. Pan, B. Dai, B. Kiran, J. Li, andL. S. Wang J. Chys. Chem. C112, 11920-11928 (2008). 286.pdf
Boronyls as Key Structural Units in Boron Oxide Clusters: B(BO)2− and B(BO)3−
- J. Zhai, S. D. Li, andL. S. Wang J. Am. Chem. Soc.129, 9254-9255 (2007). 263.pdf
On the Electronic and Structural Properties of Tri-Niobium Oxide Clusters Nb3On− (n = 3-8): Photoelectron Spectroscopy and Density Functional Calculations
- J. Chen, H. J. Zhai, Y. F. Zhang, X. Huang, andL. S. Wang J. Phys. Chem. A114, 5958-5966 (2010). 324.pdf
Structural and Electronic Properties of Reduced Transition Metal Oxide Clusters, M3O8 and M3O8− (M = Cr, W), from Photoelectron Spectroscopy and Quantum Chemical Calculations
- G. Li, H. J. Zhai,L. S. Wang, and D. A. Dixon J. Phys. Chem. A113, 11273-11288 (2009). 310.pdf
Structural Evolution, Sequential Oxidation, and Chemical Bonding in Tri-Tantalum Oxide Clusters: Ta3On− and Ta3On (n = 1-8)
- J. Zhai, B. Wang, X. Huang,andL. S. Wang J. Chys. Chem. A.113, 9804-9813 (2009). 308.pdf
Probing the Electronic and Structural Properties of the Niobium Trimer Cluster and its Mono- and Di-oxides: Nb3On− and Nb3On (n = 0-2)
- J. Zhai, B. Wang, X. Huang, andL. S. Wang J. Phys. Chem. A113, 3866-3875 (2009). 300.pdf
Probing the Electronic and Structural Properties of Chromium Oxide Clusters (CrO3)n− and (CrO3)n (n = 1−5): Photoelectron Spectroscopy and Density Functional Calculations
- J. Zhai, S. G. Li, D. A. Dixon, andL. S. Wang J. Am. Chem. Soc.130, 5167-5177 (2008). 278.pdf
Probing the Electronic Structure and Band Gap Evolution of Titanium Oxide Clusters (TiO2)n− (n = 1-10) Using Photoelectron Spectroscopy
- J. Zhai andL. S. Wang J. Am. Chem. Soc.129, 3022-3026 (2007). 255.pdf
On the Structure and Chemical Bonding of Tri-Tungsten Oxide Clusters W3On− and W3On (n = 7−10): W3O8 As A Molecular Model for O-Deficient Defect Sites in Tungsten Oxides
- Huang, H. J. Zhai, J. Li, andL. S. Wang J. Phys. Chem. A110, 85-92 (2006). 220.pdf
Electronic and Structural Evolution and Chemical Bonding in Ditungsten Oxide Clusters: W2On− and W2On (n = 1-6)
- J. Zhai, X. Huang, L. F. Cui, X. Li, J. Li, andL. S. Wang J. Phys. Chem. A109, 6019-6030 (2005). 205.pdf
Electronic Structure and Chemical Bonding in MOn– and MOn Clusters (M = Mo, W; n = 3-5): A Photoelectron Spectroscopy and ab Initio Study
- J. Zhai, B. Kiran, L. F. Cui, X Li, D. A. Dixon, andL. S. Wang J. Am. Chem. Soc.126, 16134-16141 (2004). 192.pdf
In Search of Covalently-Bound Tetra- and Penta-Oxygen Species: A Photoelectron Spectroscopic and Ab Initio Investigation of MO4– and MO5– (M = Li, Na, K, Cs)
- J. Zhai, X. Yang, X. B. Wang,L. S. Wang, B. Elliott, and A. I. Boldyrev J. Am. Chem. Soc.124, 6742-6750 (2002). 138.pdf
Electronic Structure and Chemical Bonding of Divanadium Oxide Clusters (V2Ox, x = 3−7) from Anion Photoelectron Spectroscopy
- J. Zhai andL. S. Wang J. Chem. Phys.117, 7882-7888 (2002). 144.pdf
(MgO)n– (n = 1−5) Clusters: Multipole-Bound Anions and Photodetachment Spectroscopy
- Gutowski, P. Skurski, X. Li, andL. S. Wang Phys. Rev. Lett. 85, 3145-3148 (2000). 111.pdf
Structural and Electronic Properties of Iron Monoxide Clusters FenO and FenO– (n = 2–6): A Combined Photoelectron Spectroscopy and Density Functional Theory Study
- L. Gutsev, C. W. Bauschlicher, Jr., H. J. Zhai, andL. S. Wang J. Chem. Phys.119, 11135-11145 (2003). 167.pdf
Observation and Photoelectron Spectroscopic Study of Novel Mono- and Di-iron Oxide Molecules: FeOy– (y = 1-4) and Fe2Oy– (y = 1−5)
- Wu, S. R. Desai, andL. S. Wang J. Am. Chem. Soc.118, 5296-5301 (1996). 39.pdf
Sequential Oxygen Atom Chemisorption on Surfaces of Small Iron Clusters
- S. Wang, H. Wu and S. R. Desai Phys. Rev. Lett. 76, 4853-4856 (1996). 41.pdf
Planar-to-Tubular Structural Transition in Boron Clusters: B20 as the Embryo of Single-Walled Boron Nanotubes
- Kiran, S. Bulusu, H. J. Zhai, S. Yoo, X. C. Zeng, andL. S. Wang
Proc. Natl. Acad. Sci. (USA) 102, 961-964 (2005). 193.pdf
Structural Evolution of Silicon Nanoclusters SiN (20 ≤ N ≤ 45)
- Bai, L. F. Cui,J. Wang,S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L. S. Wang, and X. C. Zeng J. Phys. Chem. A110, 908-912 (2006). 222.pdf
Si3Ox (x = 1−6): Models for Oxidation of Silicon Surfaces and Defect Sites in Bulk Oxide Materials
- S. Wang, J. B. Nicholas, M. Dupuis, H. Wu, and S. D. Colson
Phys. Rev. Lett. 78, 4450-4453 (1997). 51.pdf
Photoelectron Spectra of Aluminum Cluster Anions: Temperature Effects and Ab Initio Simulations
- Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, andL. S. Wang
Phys. Rev. B 60, R11297-R11300 (1999). 83.pdf
Aluminum Cluster Anions: Photoelectron Spectroscopy and Ab-Initio Simulations
- Akola, M. Manninen, H. Hakkinen, U. Landman, X. Li, andL. S. Wang
Phys. Rev. B 62, 13216-13228 (2000). 112.pdf
Observation of Triatomic Species with Conflicting Aromaticity: AlSi2– and AlGe2–
- Y. Zubarev, X. Li,L. S. Wang, and A. I. Boldyrev J. Phys. Chem. B110, 9743-9746 (2006). 231.pdf
Structure of the NaxClx+1– (x = 1−4) Clusters via Ab Initio Genetic Algorithm and Photoelectron Spectroscopy
- N. Alexandrova, A. I. Boldyrev, Y. J. Fu, X. Yang, X. B. Wang, andL. S. Wang J. Chem. Phys.121, 5709-5719. 184.pdf
Experimental and Computational Studies of Alkali-Metal Coinage-Metal Clusters
- C. Lin, D. Sundholm, J. Juselius, L. F. Cui, X. Li, H. J. Zhai, andL. S. Wang J.Phys. Chem. A110, 4244-4250 (2006). 226.pdf
Electronic and Structural Evolution of Mono-Iron Sulfur Clusters, FeSn– and FeSn (n = 1−6), From Anion Photoelectron Spectroscopy
- J. Zhai, B. Kiran, andL. S. Wang J. Phys. Chem.A107, 2821-2828 (2003). 156.pdf
Structural and Electronic Properties of Small Titanium Clusters: An Anion Photoelectron Spectroscopy and Density Functional Study
- Castro, S. Liu, H. J. Zhai, andL. S. Wang J. Chem. Phys.118, 2116-2123 (2003). 151.pdf
Vibrationally Resolved Photoelectron Spectra of TiCx– (x = 2−5) Clusters
- B. Wang, C. F. Ding, andL. S. Wang J. Phys. Chem. A101, 7699-7701 (1997). 54.pdf
Growth Pathways of Metallocarbohedrenes: Cage-like or Cubic?
- S. Wangand H. Cheng
Phys. Rev. Lett. 78, 2983-2986 (1997). 50.pdf
Photoelectron Spectroscopy of Chromium Clusters: Observation of Even-Odd Alternations and Theoretical Interpretation
- S. Wang, H. Wu, and H. Cheng
Phys. Rev. B 55, 12884-12887 (1997). 49.pdf
Dimer Growth, Structure Transition and Antiferromagnetic Ordering in Small Cr Clusters
- S. Cheng andL. S. Wang
Phys. Rev. Lett. 77, 51-54 (1996). 10.pdf