Welcome to PROBE lab!

Photonics Research of Bio/Nano Environments

Author: cpolucha

Krishangi Krishna’s poster took second place at Boston Photonics Day

Traditional optical tweezers rely on the use of continuous-wave laser sources with moderate to high optical powers, leading to unwanted thermal effects. Here, we demonstrate that a femtosecond laser can provide optical tweezing of microparticles using an average power as low as 80 uW. 

Our work on Interferometry was published in Optica

When using the Space-Time light sheet, the interferometer exhibits 23% higher phase stability compared to the Gaussian light sheet (GLS), and 80% higher stability when compared to the Gaussian beam (GB). We find that while both ST light sheet and GLS exhibit significantly higher phase stability than the GB, ST light sheets have the added advantage of being resistant to speckle generation when a thin diffuser is inserted in the interferometer. Additionally, we show that interferometry using the ST light sheet results in approximately 11× more accurate measure of an oxide thickness on the substrate than the Gaussian beam. Our findings provide a simple approach to improving the stability of optical interferometry for applications, such as high-precision length measurements, enhanced sensing, and quantum optical experiments

Read more here

Our TPL real-time monitoring work is featured on Optica’s front page

Jillian Sun’s work presents a new way to monitor two-photon lithography nanoscale fabrication could help improve the accuracy and efficiency of creating 3D engineered tissue scaffolds, according to a new study. Tissue scaffolds mimic the natural extracellular matrices found in the body, which creates a 3D environment ideal for tissue formation.

The article can be found here

This image requires alt text, but the alt text is currently blank. Either add alt text or mark the image as decorative.

Powered by WordPress & Theme by Anders Norén